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The side chain regioiomers of the 3-methoxy-4-
methylphenethylamines and 4-methoxy-3-methyl-phenethylamines
have mass spectra essentially equivalent to the controlled drug
substance 3,4-methylenedioxymethamphetamine (3,4-MDMA), all
have molecular weight of 193 and major fragment ions in their
electron ionization mass spectra at m/z 58 and 135/136.
Furthermore, the compounds in this study have ring substitutions in
the same relative positions as 3,4-MDMA. The nonequivalence of
the substituents (methoxy and methyl) yields two sets of
compounds, 3-methoxy-4-methyl- and 4-methoxy-3-
methylphenethylamines. The perfluoroacyl derivatives
(pentafluoropropionylamides and heptafluorobutrylamides) of the
primary and secondary regioisomeric amines were prepared and
evaluated in gas chromatography-mass spectrometry studies. The
mass spectra for these derivatives are significantly individualized
and the resulting unique fragment ions allow for specific side chain
identification. The heptafluorobutrylamide derivatives offer more
fragment ions than the pentafluoropropionylamides for molecular
individualization among these regioisomeric substances. These
acylated derivatives show excellent resolution on a dimethyl
polysiloxane stationary phase such as Rtx-1.

Introduction

Early studies (1-4) in this series have shown the ten direct
regioisomeric substances, 3,4-methylenedioxymethampheta-
mine (3,4-MDMA, Ecstasy) and nine regioisomeric equivalents,
have identical molecular weights and mass spectral fragments of
equivalent mass-to-charge ratios. This unique set of substances
is made up of five regioisomeric side chains and two ring
substitution patterns (2,3- and 3,4-), yielding a total of ten com-
pounds. Analysis of these regioisomers by electron ionization
mass spectrometry does not provide data for the specific
differentiation and identification of one of these regioisomers
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(specifically the drug of abuse, 3,4-MDMA) to the exclusion of all
the other isomers. All ten compounds of MW = 193 show major
fragment ions for the imine at m/z 58, and the substituted benzyl
fragment at m/z 135/136. Further studies have demonstrated
that some of these compounds have very similar gas chromato-
graphic (GC) retention properties (1).

All ten of the direct regioisomeric substances can be resolved
using some of the more polar GC stationary phases and specific
temperature programming conditions (2). Background informa-
tion on these ten regioisomeric substances as well as their
individual mass spectra and chromatographic properties can be
found in the literature (1,2). Recent work has shown (4) the
perfluoroacyl derivatives of the eight primary and secondary
amines provide unique mass spectral fragment ions to differen-
tiate among the side chain substitution patterns for the direct
regioisomers of 3,4-MDMA. The preparation and analytical
evaluation of the ring substituted methoxy methyl metham-
phetamines, a series of isobaric compounds (identical mass but
different elemental composition) related to 3,4-MDMA, has been
described (5). The ten methoxy methyl methamphetamines were
compared to 2,3- and 3,4-MDMA,; all 12 of these compounds have
the same side chain structure generating the same structure for
the m/z 58 ion, the base peak in the electron ionization mass
spectrum for these amines. Mass spectral differentiation of
3,4-MDMA from some of the methoxy methyl metham-
phetamines was possible after formation of the perfluoroacyl
derivatives. GC separation on non-polar stationary phases
successfully resolved subsets of the methoxy methyl metham-
phetamines, based on ring position of the methoxy group, from
2,3- and 3,4-MDMA as the perfluoroacyl derivatives.

Combination of the five possible side chains and the ten
different ring methoxy methyl substitution patterns yields fifty
isomeric compounds all of MW = 193 and mass spectra of
probable equivalence to 3,4 MDMA. This report describes the MS
and GC behavior of a set of selected compounds having
nonequivalent ring substituents at the 3- and 4-position of the
aromatic ring. Thus, these ten compounds represent all the
possible regioisomeric methoxy methyl phenethylamines having
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the same 3,4 substitution pattern as 3,4-MDMA. The overall goal
of our current efforts is to evaluate an entire side chain series for
at least one methyl group ring substitution pattern for each of
the three methoxy group substitutions 2-, 3-, and 4- relative to
the alkylamine side chain (5-7). Differentiation of regioisomers
and isobaric substances is a significant issue in forensic drug
chemistry and has been addressed in a number of drug
categories (5-13).

Experimental

Analytical

Analytical studies were conducted using an Agilent
Technologies (Santa Clara, CA) 7890A GC and an Agilent 7683B
auto injector coupled with a 5975C VL Agilent mass selective
detector. The mass spectral scan rate was 2.86 scans/s. The
GC was operated in splitless mode with a carrier gas (helium
grade 5) flow rate was 0.7 mL/min and a column head pressure
of 10 psi.

The mass spectrometer was operated on the electron impact
(EI) mode using an ionization voltage of 70 eV and a source
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Figure 1. Structures of the regioisomeric and isobaric amines in this study.
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temperature of 230°C. The GC injector was maintained at 250°C
and the transfer line at 280°C. The mass spectra reported were
obtained by background subtraction and are the average of at
least five scans. Samples were diluted in HPLC-grade acetonitrile
(Fisher Scientific, Fairlawn NJ) and introduced via the auto
injector as individual solutions and in a physical mixture.

The chromatographic separations (and collection of retention
data) were carried out on a 30 m x 0.25 mm-i.d. fused silica
column coated with 0.25 pm 100% dimethyl polysiloxane
(Rtx-1) purchased from Restek corporation (Bellefonte, PA).

Drugs and reagents

All laboratory reagents and chemicals were obtained either
from Aldrich Chemical Company (Milwaukee, WI), TCI America
(Portland, OR), or Fisher Scientific (Atlanta, GA). Pentafluoro-
propionic anhydride and heptafluorobutyric anhydride were
purchased from UCT (Bristol, PA).

Samples of 2,3- and 3,4-MDMA and the other regioisomeric
amines described in this study were synthesized as described in
previous publications from this laboratory (1). The synthetic
procedures all used the corresponding ring substituted
benzaldehydes as the starting precursor substance.

Derivatization procedure

Each perfluoroacylamide was prepared individually from the
hydrochloride salts of the regioisomers by dissolving
approximately 0.3 mg (1.33 x 10-5 mole) of each amine in 50 pL
of ethyl acetate followed by addition of large excess (250 pL) of
the appropriate derivatizing agent (pentafluoropropionic
anhydride or heptafluorobutyric anhydride) and the derivatiza-
tion reaction mixtures were incubated in capped tubes at 70°C
for 20 min. Following incubation, each sample was evaporated to
dryness under a stream of dry air at 55°C and reconstituted with
200 pL of ethyl acetate and 50 pL of pyridine. A portion of the
final solutions (50 pL) were diluted with HPLC grade acetonitrile
(200 pL) to give the working solutions.

Synthesis

The methods for the preparation of the ten 2,3- and
3,4-methylenedioxy-regioisomers have been described in pre-
vious reports (1,3). 3-Methoxy-4-methylbenzaldehyde was syn-
thesized from commercially available methyl-3-methoxy-4-
methyl benzoate via RedAl reduction to the corresponding
alcohol followed by selective oxidation of the resulting alcohol
using pyridinium chlorochromate and celite. 4-Methoxy-3-
methyl benzaldehyde is commercially available. Condensation of
the ring substituted methoxy methyl benzaldehydes with a
nitroalkane (nitro-methane, nitroethane, or 1-nitropropane)
under basic conditions yields the corresponding 1-(methoxy-
methyl phenyl)-2- nitroalkene, which upon reduction with
lithium aluminum hydride (LAH) yields the primary amines.
The N-methyl and N-ethyl analogues were prepared from the pri-
mary amines by acylation followed by LAH reduction.
Alternately, the nitroalkenes are hydrolyzed to the corre-
sponding ring substituted methoxy methyl phenyl ketones and
reductively aminated with methyl-, dimethyl-, or ethylamine in
the presence of sodium cyanoborohydride. The 1-(methoxy-
methyl-phenyl)-2,2-dimethylethanamine was prepared from the
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corresponding benzaldehyde via conversion to the corre-
sponding benzylchloride and condensation with isobutyric acid.
The resulting 2,2-dimethyl-3-(methoxy methyl phenyl)-1-propi-
onic acid was treated sequentially with sodium azide, ethyl chlo-
roformate, and benzyl alcohol followed by catalytic
hydrogenation under low pressure to yield the desired
1-(methoxy-methyl-phenyl)-2,2-dimethylethanamines (1).

Results and Discussion

MS

Mass spectrometry (MS) is the primary method for confirming
the identity of drugs and related substances in forensic samples.
The mass spectra of phenethylamines are characterized by a base
peak formed from an amine initiated alpha-cleavage reaction
involving the carbon—carbon bond of the ethyl linkage between
the aromatic ring and the amine. In 3,4-MDMA (MW = 193), the
alpha-cleavage reaction yields the substituted imine fragment at
m/z 58 and the 3,4-methylenedioxybenzyl fragment at mass

135/136 (for the cation and the radical cation, respectively).
Thus, the mass spectrum for 3,4-MDMA contains major ions at
m/z 58 and 135/136 as well as other ions of low relative
abundance (1).

The side chain regioisomers of 3-methoxy-4-methyl
phenethylamine and 4-methoxy-3-methyl phenethylamine
(Compounds 1-10, Figure 1) have the potential to yield a mass
spectrum essentially equivalent to 3,4-MDMA. All have molec-
ular weight of 193 and major fragment ions in their electron
ionization mass spectra at m/z 58 and 135/136 (Figure 2). The
individual mass spectra for 2,3- and 3,4-MDMA are also
presented in Figure 2 (Compounds 11 and 12). The isobaric
methoxy-methyl-benzyl (CqH;;0)* fragments have the same
mass as the methylenedioxybenzyl (CgH;0,)* cation occurring at
m/z 135. Furthermore, the m/z 58 ion in the ring substituted
methoxy-methyl phenethylamine is regioisomeric with that
obtained in the mass spectra of both 2,3- and 3,4-MDMA (Figure
3). This lack of mass spectral specificity for the isomers shown in
Figure 2, in addition to the possibility of chromatographic
co-elution with 3,4-MDMA, could result in misidentification in
this series of drugs and drug-like substances.
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The second phase of this study involved the preparation and
evaluation of various perfluoroacylated derivatives of the
regioisomeric primary and secondary amines, in an effort to
individualize their mass spectra via formation of unique marker
ions and improved chromatographic resolution. Acylation of the
amines generally lowers the basicity of nitrogen and can allow
other fragmentation pathways to play a more prominent role in
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these ions represent the (M-135)+* species (Figure 6). The
3-methoxy-4-methylbenzyl cation, 4-methoxy-3-methylbenzyl
cation, and the methylenedioxybenzyl cation (m/z 135) are
fragments common to all spectra in Figures 4 and 5. Indeed, the
m/z 135 ion is the base peak in all the PFPA and HFBA derivatives
of compounds 7-10, and this increased relative intensity may
serve as an indicator ion for discrimination of the 4-methoxy-3-
methyl ring substitution pattern from other ring substitution
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patterns in this study. The decreased role for the alpha cleavage
reaction in the fragmentation of these amides allows the forma-
tion of ions more diagnostic of each individual isomer. Acylation
weakens the bond between nitrogen and the alpha-carbon
allowing the formation of charged hydrocarbon species of

increased relative abundance (1

4). These hydrocarbons of

varying mass identify the number of carbons attached directly to
the aromatic ring. The mass spectra in Figures 4 and 5 show
hydrocarbon fragments at m/z 148, 162, and 176 for a
two-carbon, three-carbon, and four-carbon chain attached
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directly to the aromatic ring.

The spectra for the N-ethyl derivatives in Figures 4(2), 4(7),
5(2), and 5(7) show a base peak at m/z 148 corresponding to the
two-carbon alkene radical cation, which occurs from hydrogen
rearrangement and subsequent fragmentation of the alkyl
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carbon to nitrogen bond of the phenethylamine side chain. This
ion at m/z 148 would only occur for the N-ethyl regioisomer. The
relative abundance of both m/z 148 and 135 offer a clear
discrimination of compound 2 from its direct regioisomer
(compound 7) as well as from the other isomers. The spectra in
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Figures 4(3), 4(8), 4(11), 4(12), 5(3), 5(8), 5(11), and 5(12) show
the ring substituted methoxy-methyl or the methylene-
dioxyphenylpropene hydrocarbon ion at m/z 162 (the three-
carbon alkene radical cation), identifying these molecules as the
PFPA and HFBA derivatives containing the methamphetamine
side chain, compounds 3, 8, 11, and 12, respectively. The spectra
for the PFPA and HFBA derivatives of the primary amines 4, 5, 9,
and 10 show ions at m/z 176 from the four-carbon alkene radical
cation of the 3-methoxy-4-methyl- and 4-methoxy-3-methyl-
phenethylamines. This m/z 176 results from hydrogen
rearrangement and subsequent fragmentation of the alkyl
carbon to nitrogen bond yielding the methoxymethyl-phenyl-
butene radical cation. The lower abundance of m/z 176 for
compounds 4 and 9 may be attributed to steric inhibition of
hydrogen transfer in the alpha, alpha-dimethyl substitution
pattern.

While the alkene ions at 148, 162, and 176 help to identify the
side chain regioisomers, one complicating factor in the PFPA
derivatives for the N-ethylphenethylamines [Figures 4(2) and
4(7)] is the appearance of an ion at m/z 176 in addition to the
base peak at m/z 148. Based on the previous discussion, the m/z
176 ion suggests a four carbon chain directly attached to the
aromatic ring as occurs for the alpha-ethyl- and alpha, alpha-
dimethyl-phenethylamines [Figures 4(4), 4(5), 4(9), 4(10), and
5(4), 5(5), 5(9), 5(10)]. The m/z 176 ion in the spectra for the
PFPA derivatives of the N-ethyl regioisomers [Figures 4(2) and
4(7)] is a rearrangement of the 7/z 204 ion resulting in the loss
of mass 28 (the N-ethyl group) via hydrogen transfer. This coin-
cidental common mass from two different fragmentation path-
ways is confirmed by examining the mass spectra for the HFBA
derivatives of the N-ethyl-phenethylamines shown in Figures
5(2) and 5(7). The loss of 28 mass units from the acylimine frag-
ment at m/z 254 yields the equivalent fragment ion at m/z 226.
Thus, the HFBA derivatives may offer more characteristic ions
for individualization of these regioisomeric substances com-
pared to the PFPA derivatives.

A comparison of the PFPA derivatives for compounds 3, 8, 11,
and 12 [Figures 4(3), 4(8), 4(11), and 4(12)] with their HFBA
derivatives [Figures 5(3), 5(8), 5(11), and 5(12)] indicates unique
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m/z=176,R = CHg Ry=H, cpds 5 and 10

Figure 6. Structures of the major El fragments for the perfluoroacylated com-
pounds in this study.

ions at m/z 160 and m/z 210. This mass difference of 50 (CFy)
suggests these ions contain the perfluoroalkyl group for each
derivative, CoF5 and C5F7, respectively. Additional information
about these ions were obtained in previous deuterium labeling
studies, which confirmed that methyl group on nitrogen is a part
of this resulting fragment (4,15). The remaining mass 26 would
correspond to CN, and the proposed structures of 7/z 160 and
210 are shown in Figure 6.

GC

The PFPA and HFBA derivatives of the primary and secondary
amine side chain regioisomers of the ring substituted methoxy
methyl phenethyl amines, 2,3-MDMA and 3,4-MDMA, were
compared on a 100% dimethyl polysiloxane (Rtx-1) stationary
phase. Several temperature programs were evaluated and one
program showing the best compromise between resolution and
analysis time was used to generate the chromatograms in Figure
7. The chromatograms show that when the ring substitution
pattern is held constant (i.e., 3-methoxy-4-methyl- or 4-
methoxy-3-methyl-) the two secondary amides elute before the
two tertiary amides. Additionally, in every case in this limited set
of compounds, the branched side chain elutes before the straight
chain isomer when the ring substitution pattern and the degree
of amide substitution are constant, regardless of the derivatizing
agent. Therefore, the alpha, alpha-dimethyl isomer elutes first
followed by the alpha-ethyl isomer (both secondary amides),
then the methamphetamine, and N-ethyl phenethylamines (the
two tertiary amides).
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Figure 7. GC separation of the PFPA (A) and HFBA (B) derivatives of com-
pounds 2-5 and 7-12; Rtx-1 column.
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When the side chain is held constant, the 3-methoxy-4-methyl
ring substitution pattern elutes before the 4-methoxy-3-methyl
ring substitution pattern and this elution order is the same for
both the PFPA and the HFBA derivatives. Perhaps the most useful
information in these chromatograms is the relative
elution of the derivatized controlled substance 3,4-MDMA and its
closest eluting regioisomeric equivalents. Both the PFPA and
HFBA derivatives of 3,4-MDMA elute after the N-ethyl-3-methoxy-
4-methyl phenethylamine and 4-methoxy-3-methylphenethy-
lamine PFPAs and HFBAs. The N-ethyl regioisomers show very
distinct mass spectra with several characteristic ions to differen-
tiate these compounds from the drug of abuse 3,4-MDMA. Thus,
derivatization methods coupled with chromatographic and mass
spectral procedures can allow for the characterization and differ-
entiation of these ten uniquely isomeric substances. The individu-
alization is possible without the need for reference samples of all
these uniquely similar substances.

Conclusions

3,4-MDMA, 2,3-MDMA, and ten side chain regioisomers of
3-methoxy-4-methyl-phenethylamine and 4-methoxy-3-methyl-
phenethylamine are a unique subset of regioisomeric and
isobaric molecules. Each compound has a molecular weight of
193 and yields a base peak at m2/z 58 in the mass spectrum from
the loss of the corresponding methylenedioxybenzyl or the mass
equivalent isobaric ring substituted methoxy methyl benzyl
groups. Thus the traditional electron impact mass spectrum
provides little structural information for differentiating among
these ten compounds.

Derivatization of the eight primary and secondary amines with
various acylating agents yields amides that significantly individ-
ualize the mass spectra and allow for specific identification. The
individualization is the result of fragmentation of the alkyl
carbon-nitrogen bond yielding hydrocarbon fragments at m/z
148, 162, and 176 as well as other unique fragments from these
regioisomeric amides. The PFPA and HFBA derivatives are essen-
tially equivalent for chromatographic purposes however; the
HFBA derivatives offer more unique fragment ions for additional
discrimination among these regioisomeric substances.
Chromatographic resolution of the acylated amines was
achieved on a relatively non-polar stationary phase, Rtx-1 (100%
dimethyl polysiloxane).
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